Articles
| Open Access |
https://doi.org/10.55640/business/volume05issue10-03
DYNAMIC PRICING IN FINANCIAL TECHNOLOGY: EVALUATING MACHINE LEARNING SOLUTIONS FOR MARKET ADAPTABILITY
Abstract
The rapid advancement of technology has transformed the financial services sector, leading to the rise of fintech companies that leverage cutting-edge tools such as artificial intelligence (AI) and machine learning (ML) to offer innovative solutions. One area where fintech is particularly impactful is dynamic pricing, which involves adjusting prices in real-time based on market conditions, user behavior, and external factors. The ability to optimize pricing in response to fluctuating conditions is critical for maximizing profitability, improving customer satisfaction, and maintaining competitiveness. In this context, machine learning algorithms provide a powerful framework for making data-driven pricing decisions by learning from historical data and predicting future trends.
ZENODO DOI:- https://doi.org/10.5281/zenodo.14013976
Keywords
Financial Technology, Machine Learning, Market Adaptability
References
Mozumder, M. A. S., Nguyen, T. N., Devi, S., Arif, M., Ahmed, M. P., Ahmed, E., ... & Uddin, A. (2024). Enhancing Customer Satisfaction Analysis Using Advanced Machine Learning Techniques in Fintech Industry. Journal of Computer Science and Technology Studies, 6(3), 35-41.
Modak, C., Ghosh, S. K., Sarkar, M. A. I., Sharif, M. K., Arif, M., Bhuiyan, M., ... & Devi, S. (2024). Machine Learning Model in Digital Marketing Strategies for Customer Behavior: Harnessing CNNs for Enhanced Customer Satisfaction and Strategic Decision-Making. Journal of Economics, Finance and Accounting Studies, 6(3), 178-186.
Chowdhury, M. S., Shak, M. S., Devi, S., Miah, M. R., Al Mamun, A., Ahmed, E., ... & Mozumder, M. S. A. (2024). Optimizing E-Commerce Pricing Strategies: A Comparative Analysis of Machine Learning Models for Predicting Customer Satisfaction. The American Journal of Engineering and Technology, 6(09), 6-17.
Md Abu Sayed, Badruddowza, Md Shohail Uddin Sarker, Abdullah Al Mamun, Norun Nabi, Fuad Mahmud, Md Khorshed Alam, Md Tarek Hasan, Md Rashed Buiya, & Mashaeikh Zaman Md. Eftakhar Choudhury. (2024). COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR PREDICTING CYBERSECURITY ATTACK SUCCESS: A PERFORMANCE EVALUATION. The American Journal of Engineering and Technology, 6(09), 81–91. https://doi.org/10.37547/tajet/Volume06Issue09-10
Md Al-Imran, Salma Akter, Md Abu Sufian Mozumder, Rowsan Jahan Bhuiyan, Tauhedur Rahman, Md Jamil Ahmmed, Md Nazmul Hossain Mir, Md Amit Hasan, Ashim Chandra Das, & Md. Emran Hossen. (2024). EVALUATING MACHINE LEARNING ALGORITHMS FOR BREAST CANCER DETECTION: A STUDY ON ACCURACY AND PREDICTIVE PERFORMANCE. The American Journal of Engineering and Technology, 6(09), 22–33. https://doi.org/10.37547/tajet/Volume06Issue09-04
Md Murshid Reja Sweet, Md Parvez Ahmed, Md Abu Sufian Mozumder, Md Arif, Md Salim Chowdhury, Rowsan Jahan Bhuiyan, Tauhedur Rahman, Md Jamil Ahmmed, Estak Ahmed, & Md Atikul Islam Mamun. (2024). COMPARATIVE ANALYSIS OF MACHINE LEARNING TECHNIQUES FOR ACCURATE LUNG CANCER PREDICTION. The American Journal of Engineering and Technology, 6(09), 92–103. https://doi.org/10.37547/tajet/Volume06Issue09-11
Bahl, S., Kumar, P., & Agarwal, A. (2021). Sentiment analysis in banking services: A review of techniques and challenges. International Journal of Information Management, 57, 102317.
Ashim Chandra Das, Md Shahin Alam Mozumder, Md Amit Hasan, Maniruzzaman Bhuiyan, Md Rasibul Islam, Md Nur Hossain, Salma Akter, & Md Imdadul Alam. (2024). MACHINE LEARNING APPROACHES FOR DEMAND FORECASTING: THE IMPACT OF CUSTOMER SATISFACTION ON PREDICTION ACCURACY. The American Journal of Engineering and Technology, 6(10), 42–53. https://doi.org/10.37547/tajet/Volume06Issue10-06
Rowsan Jahan Bhuiyan, Salma Akter, Aftab Uddin, Md Shujan Shak, Md Rasibul Islam, S M Shadul Islam Rishad, Farzana Sultana, & Md. Hasan-Or-Rashid. (2024). SENTIMENT ANALYSIS OF CUSTOMER FEEDBACK IN THE BANKING SECTOR: A COMPARATIVE STUDY OF MACHINE LEARNING MODELS. The American Journal of Engineering and Technology, 6(10), 54–66. https://doi.org/10.37547/tajet/Volume06Issue10-07
Agrawal, A., Gans, J. S., & Goldfarb, A. (2018). Prediction machines: The simple economics of artificial intelligence. Harvard Business Press.
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
Chen, L., & Kaya, O. (2020). Dynamic pricing in online markets with competition. Journal of Economic Dynamics and Control, 113, 103862.
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189-1232.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Grewal, D., Roggeveen, A. L., & Nordfält, J. (2017). The future of retailing. Journal of Retailing, 93(1), 1-6.
Huang, Z., Chang, Y., & Chung, W. (2020). Pricing for fintech services: A customer-centric approach. Electronic Commerce Research and Applications, 40, 100943.
Kou, G., Lu, Y., Peng, Y., Shi, Y., & Xiao, F. (2021). Evaluation of pricing models in financial markets using artificial intelligence: A literature review. Computational Economics, 58(2), 403-435.
Kuo, T. L., & Xue, J. Y. (2014). Pricing in dynamic competition: An empirical analysis. Marketing Science, 33(6), 785-803.
Lee, I., & Shin, Y. J. (2018). Fintech: Ecosystem, business models, investment decisions, and challenges. Business Horizons, 61(1), 35-46.
Luo, J., Zhang, X., Li, Y., & Li, S. (2021). Dynamic pricing with machine learning: Application to financial products. Journal of Financial Data Science, 3(1), 45-58.
Pavlyshenko, B. (2019). Machine-learning models for sales time series forecasting. Data, 4(1), 15.
Phillips, R. (2005). Pricing and revenue optimization. Stanford University Press.
Rao, R. C. (1984). Pricing models in marketing. Journal of Business, 57(1), S39-S60.
Zhang, G. P., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14(1), 35-62.
Zhang, T., Luo, X., & Li, Y. (2019). Dynamic pricing in fintech: A machine learning perspective. International Journal of Information Management, 49, 161-172.
Zhao, X., Liu, Y., & Chen, L. (2019). Pricing strategies for fintech firms: An empiricalinvestigation. Journal of Business Research, 101, 309-319.
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189-1232.
Article Statistics
Downloads
Copyright License
Copyright (c) 2024 Md Arif, Md Shakhaowat Hossain, Pinky Akter, Sanjida Nowshin Mou, Md Jamil Ahmmed, Tauhedur Rahman, Fuad Mahmud, Md Kafil Uddin, Abdullah Al Mamun, Md Parvez Ahmed, Mohammad Hela (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.