Articles
| Open Access |
https://doi.org/10.55640/business/volume05issue11-02
INNOVATIVE MACHINE LEARNING APPROACHES TO FOSTER FINANCIAL INCLUSION IN MICROFINANCE
Abstract
This study examines the application of machine learning algorithms to enhance financial inclusion in microfinance, focusing on credit scoring, risk and fraud detection, and customer segmentation. We performed feature engineering and employed models such as Logistic Regression, Decision Trees, Random Forests, Gradient Boosting Machines (XGBoost and LightGBM), Support Vector Machines (SVM), Autoencoders, Isolation Forests, and K-means Clustering. LightGBM achieved the highest accuracy (89.6%) and AUC (0.92) in credit scoring, while Random Forests demonstrated strong performance in both loan approval (86.7% accuracy) and fraud detection (87.6% accuracy, AUC of 0.88). SVM also performed competitively, and unsupervised methods like Autoencoders and Isolation Forests showed potential for anomaly detection but required further refinement.K-means Clustering excelled in customer segmentation with a silhouette score of 0.72, enabling tailored services based on client demographics. Our findings highlight the significant impact of machine learning on improving credit scoring accuracy, reducing fraud risks, and enhancing customer service delivery in microfinance, thereby promoting financial inclusion for underserved populations. Ethical considerations and model interpretability are crucial, particularly for smaller institutions. This study advocates for the broader adoption of machine learning in the microfinance sector.
ZENODO DOI:- https://doi.org/10.5281/zenodo.14044729
Keywords
Machine Learning, Financial Inclusion, Microfinance, Credit Scoring, Fraud Detection
References
Bazarbash, M. (2019). Fintech in financial inclusion: The case of microfinance. IMF Working Papers, 19(267), 1-32. https://doi.org/10.5089/9781498321863.001
Bhattacharyya, S., Jha, S., Tharakaram, S., & Singh, S. (2011). Data mining for fraud detection in the banking sector: A survey. Journal of Financial Crime, 18(4), 470-485. https://doi.org/10.1108/13590791111184978
Demirgüç-Kunt, A., Klapper, L., Singer, D., & Van Oudheusden, P. (2020). The Global Findex Database 2017: Measuring financial inclusion and the fintech revolution. World Bank Policy Research Working Paper, (8933). https://doi.org/10.1596/978-1-4648-1250-3
Frost, J., & Prasad, A. (2021). The role of fintech in promoting financial inclusion. OECD Working Papers on Finance, Insurance and Private Pensions, No. 53. https://doi.org/10.1787/a2d35b7d-en
Heaton, J. B., Polson, N. G., & Witten, D. (2017). Deep learning for credit scoring: A case study. Journal of Financial Data Science, 1(1), 1-22. https://doi.org/10.3905/jfds.2018.1.1.001
Khandani, A. E., Kim, A. J., & Lo, A. W. (2010). Consumer credit-risk models via machine-learning algorithms. Journal of Banking & Finance, 34(11), 2767-2787. https://doi.org/10.1016/j.jbankfin.2010.06.001
Phua, C., Lee, V., Smith, K., & Gayler, R. (2010). A survey of data mining techniques for social network analysis. ACM Computing Surveys (CSUR), 43(4), 1-40. https://doi.org/10.1145/1731022.1731025
Sahay, R., Cevik, S., & Kunt, A. D. (2020). Financial inclusion in the digital age. IMF Working Papers, 20(13), 1-34. https://doi.org/10.5089/9781513520131.001
Chowdhury, M. S., Shak, M. S., Devi, S., Miah, M. R., Al Mamun, A., Ahmed, E., ... & Mozumder, M. S. A. (2024). Optimizing E-Commerce Pricing Strategies: A Comparative Analysis of Machine Learning Models for Predicting Customer Satisfaction. The American Journal of Engineering and Technology, 6(09), 6-17.
Md Abu Sayed, Badruddowza, Md Shohail Uddin Sarker, Abdullah Al Mamun, Norun Nabi, Fuad Mahmud, Md Khorshed Alam, Md Tarek Hasan, Md Rashed Buiya, & Mashaeikh Zaman Md. Eftakhar Choudhury. (2024). COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR PREDICTING CYBERSECURITY ATTACK SUCCESS: A PERFORMANCE EVALUATION. The American Journal of Engineering and Technology, 6(09), 81–91. https://doi.org/10.37547/tajet/Volume06Issue09-10
Md Al-Imran, Salma Akter, Md Abu Sufian Mozumder, Rowsan Jahan Bhuiyan, Tauhedur Rahman, Md Jamil Ahmmed, Md Nazmul Hossain Mir, Md Amit Hasan, Ashim Chandra Das, & Md. Emran Hossen. (2024). EVALUATING MACHINE LEARNING ALGORITHMS FOR BREAST CANCER DETECTION: A STUDY ON ACCURACY AND PREDICTIVE PERFORMANCE. The American Journal of Engineering and Technology, 6(09), 22–33. https://doi.org/10.37547/tajet/Volume06Issue09-04
Md Murshid Reja Sweet, Md Parvez Ahmed, Md Abu Sufian Mozumder, Md Arif, Md Salim Chowdhury, Rowsan Jahan Bhuiyan, Tauhedur Rahman, Md Jamil Ahmmed, Estak Ahmed, & Md Atikul Islam Mamun. (2024). COMPARATIVE ANALYSIS OF MACHINE LEARNING TECHNIQUES FOR ACCURATE LUNG CANCER PREDICTION. The American Journal of Engineering and Technology, 6(09), 92–103. https://doi.org/10.37547/tajet/Volume06Issue09-11
Bahl, S., Kumar, P., & Agarwal, A. (2021). Sentiment analysis in banking services: A review of techniques and challenges. International Journal of Information Management, 57, 102317.
Ashim Chandra Das, Md Shahin Alam Mozumder, Md Amit Hasan, Maniruzzaman Bhuiyan, Md Rasibul Islam, Md Nur Hossain, Salma Akter, & Md Imdadul Alam. (2024). MACHINE LEARNING APPROACHES FOR DEMAND FORECASTING: THE IMPACT OF CUSTOMER SATISFACTION ON PREDICTION ACCURACY. The American Journal of Engineering and Technology, 6(10), 42–53. https://doi.org/10.37547/tajet/Volume06Issue10-06
Rowsan Jahan Bhuiyan, Salma Akter, Aftab Uddin, Md Shujan Shak, Md Rasibul Islam, S M Shadul Islam Rishad, Farzana Sultana, & Md. Hasan-Or-Rashid. (2024). SENTIMENT ANALYSIS OF CUSTOMER FEEDBACK IN THE BANKING SECTOR: A COMPARATIVE STUDY OF MACHINE LEARNING MODELS. The American Journal of Engineering and Technology, 6(10), 54–66. https://doi.org/10.37547/tajet/Volume06Issue10-07
Awoyemi, J. O., Adetunmbi, A. O., & Oluwadare, S. A. (2017). Credit card fraud detection using machine learning techniques: A comparative analysis. Journal of Applied Security Research, 12(4), 1–14. https://doi.org/10.1080/19361610.2017.1315696
Bhowmik, D. (2019). Detecting financial fraud using machine learning techniques. International Journal of Data Science, 6(2), 102-121. https://doi.org/10.1080/25775327.2019.1123126
Md Habibur Rahman, Ashim Chandra Das, Md Shujan Shak, Md Kafil Uddin, Md Imdadul Alam, Nafis Anjum, Md Nad Vi Al Bony, & Murshida Alam. (2024). TRANSFORMING CUSTOMER RETENTION IN FINTECH INDUSTRY THROUGH PREDICTIVE ANALYTICS AND MACHINE LEARNING. The American Journal of Engineering and Technology, 6(10), 150–163. https://doi.org/10.37547/tajet/Volume06Issue10-17
DYNAMIC PRICING IN FINANCIAL TECHNOLOGY: EVALUATING MACHINE LEARNING SOLUTIONS FOR MARKET ADAPTABILITY. (2024). International Interdisciplinary Business Economics Advancement Journal, 5(10), 13-27. https://doi.org/10.55640/business/volume05issue10-03
Article Statistics
Downloads
Copyright License
Copyright (c) 2024 Md Shujan Shak, Pritom Das, Afrina Khan, Mohammad Helal, Murshida Alam, Md Nad Vi Al Bony, Nafis Anjum, Md Habibur Rahman, Aftab Uddin, Tamanna Pervin (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.