Articles | Open Access | https://doi.org/10.55640/business/volume06issue10-02

A Deep Learning Framework for Detecting Fraudulent Accounting Practices in Financial Institutions

Abstract

Fraudulent accounting practices pose a significant threat to the stability and integrity of banking systems, leading to financial losses, reputational damage, and systemic risks. This study proposes a deep learning-based framework for detecting fraudulent accounting transactions using a benchmark financial dataset from the UCI repository. The methodology incorporates data preprocessing, feature extraction, and feature engineering to enhance model performance, followed by the development of advanced neural architectures including Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), and Convolutional Neural Networks (CNN). Comparative evaluation reveals that LSTM outperformed other models with an accuracy of 96.4% and an AUC of 0.981, demonstrating superior capability in identifying complex sequential fraud patterns. The integration of these models into U.S. financial institutions is discussed, highlighting their potential to improve regulatory compliance, strengthen fraud risk management, and ensure greater transparency in financial reporting. This research contributes to the growing body of knowledge in financial fraud detection by showcasing the application of deep learning techniques to fraudulent accounting, providing both academic and practical implications for the banking sector.

Keywords

Fraudulent accounting detection, deep learning, banking system, LSTM, UCI dataset, financial fraud, artificial intelligence, model evaluation

References

Ahmmed, M. J., Rahman, M. M., Das, A. C., Das, P., Pervin, T., Afrin, S., ... & Rahman, N. (2024). COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BANKING FRAUD DETECTION: A STUDY ON PERFORMANCE, PRECISION, AND REAL-TIME APPLICATION. American Research Index Library, 31-44.

Abdallah, A., Maarof, M. A., & Zainal, A. (2016). Fraud detection system: A survey. Journal of Network and Computer Applications, 68, 90–113. https://doi.org/10.1016/j.jnca.2016.04.007

Alonso, E., Carbó, J., & Molina, J. M. (2021). Deep learning methods in fraud detection: A survey. Expert Systems with Applications, 171, 114561. https://doi.org/10.1016/j.eswa.2020.114561

Ghosh, S., & Reilly, D. L. (1994). Credit card fraud detection with a neural network. Proceedings of the 27th Annual Hawaii International Conference on System Sciences, 3, 621–630. IEEE. https://doi.org/10.1109/HICSS.1994.323314

Li, J., Huang, K. Y., Jin, J., & Shi, J. (2020). A survey on financial fraud detection: Approaches and challenges. Information Systems Frontiers, 22(5), 1209–1227. https://doi.org/10.1007/s10796-019-09929-6

Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50(3), 559–569. https://doi.org/10.1016/j.dss.2010.08.006

Phua, C., Lee, V., Smith, K., & Gayler, R. (2010). A comprehensive survey of data mining-based fraud detection research. arXiv preprint arXiv:1009.6119. https://arxiv.org/abs/1009.6119

West, J., & Bhattacharya, M. (2016). Intelligent financial fraud detection: A comprehensive review. Computers & Security, 57, 47–66. https://doi.org/10.1016/j.cose.2015.09.005

Zhang, Y., Jiang, J., & Xu, Y. (2022). Fraud detection in banking systems using machine learning: A survey. IEEE Access, 10, 1034–1050. https://doi.org/10.1109/ACCESS.2021.3137685

Mohammad Iftekhar Ayub, Biswanath Bhattacharjee, Pinky Akter, Mohammad Nasir Uddin, Arun Kumar Gharami, Md Iftakhayrul Islam, Shaidul Islam Suhan, Md Sayem Khan, & Lisa Chambugong. (2025). Deep Learning for Real-Time Fraud Detection: Enhancing Credit Card Security in Banking Systems. The American Journal of Engineering and Technology, 7(04), 141–150. https://doi.org/10.37547/tajet/Volume07Issue04-19

Nguyen, A. T. P., Jewel, R. M., & Akter, A. (2025). Comparative Analysis of Machine Learning Models for Automated Skin Cancer Detection: Advancements in Diagnostic Accuracy and AI Integration. The American Journal of Medical Sciences and Pharmaceutical Research, 7(01), 15-26.

Nguyen, A. T. P., Shak, M. S., & Al-Imran, M. (2024). ADVANCING EARLY SKIN CANCER DETECTION: A COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR MELANOMA DIAGNOSIS USING DERMOSCOPIC IMAGES. International Journal of Medical Science and Public Health Research, 5(12), 119-133.

Phan, H. T. N., & Akter, A. (2025). Predicting the Effectiveness of Laser Therapy in Periodontal Diseases Using Machine Learning Models. The American Journal of Medical Sciences and Pharmaceutical Research, 7(01), 27-37.

Phan, H. T. N. (2024). EARLY DETECTION OF ORAL DISEASES USING MACHINE LEARNING: A COMPARATIVE STUDY OF PREDICTIVE MODELS AND DIAGNOSTIC ACCURACY. International Journal of Medical Science and Public Health Research, 5(12), 107-118.

Al Mamun, A., Nath, A., Dey, S. K., Nath, P. C., Rahman, M. M., Shorna, J. F., & Anjum, N. (2025). Real-Time Malware Detection in Cloud Infrastructures Using Convolutional Neural Networks: A Deep Learning Framework for Enhanced Cybersecurity. The American Journal of Engineering and Technology, 7(03), 252-261.

Mohammad Iftekhar Ayub, Biswanath Bhattacharjee, Pinky Akter, Mohammad Nasir Uddin, Arun Kumar Gharami, Md Iftakhayrul Islam, Shaidul Islam Suhan, Md Sayem Khan, & Lisa Chambugong. (2025). Deep Learning for Real-Time Fraud Detection: Enhancing Credit Card Security in Banking Systems. The American Journal of Engineering and Technology, 7(04), 141–150. https://doi.org/10.37547/tajet/Volume07Issue04-19

Safayet Hossain, Ashadujjaman Sajal, Sakib Salam Jamee, Sanjida Akter Tisha, Md Tarake Siddique, Md Omar Obaid, MD Sajedul Karim Chy, & Md Sayem Ul Haque. (2025). Comparative Analysis of Machine Learning Models for Credit Risk Prediction in Banking Systems. The American Journal of Engineering and Technology, 7(04), 22–33. https://doi.org/10.37547/tajet/Volume07Issue04-04

Siddique, M. T., Uddin, M. J., Chambugong, L., Nijhum, A. M., Uddin, M. N., Shahid, R., ... & Ahmed, M. (2025). AI-Powered Sentiment Analytics in Banking: A BERT and LSTM Perspective. International Interdisciplinary Business Economics Advancement Journal, 6(05), 135-147.

Al Mamun, A., Nath, A., Dey, S. K., Nath, P. C., Rahman, M. M., Shorna, J. F., & Anjum, N. (2025). Real-Time Malware Detection in Cloud Infrastructures Using Convolutional Neural Networks: A Deep Learning Framework for Enhanced Cybersecurity. The American Journal of Engineering and Technology, 7(03), 252-261.

Sajal, A., Chy, M. S. K., Jamee, S. S., Uddin, M. N., Khan, M. S., Gharami, A. K., ... & Ahmed, M. (2025). Forecasting Bank Profitability Using Deep Learning and Macroeconomic Indicators: A Comparative Model Study. International Interdisciplinary Business Economics Advancement Journal, 6(06), 08-20.

Paresh Chandra Nath, Md Sajedul Karim Chy, Md Refat Hossain, Md Rashel Miah, Sakib Salam Jamee, Mohammad Kawsur Sharif, Md Shakhaowat Hossain, & Mousumi Ahmed. (2025). Comparative Performance of Large Language Models for Sentiment Analysis of Consumer Feedback in the Banking Sector: Accuracy, Efficiency, and Practical Deployment. Frontline Marketing, Management and Economics Journal, 5(06), 07–19. https://doi.org/10.37547/marketing-fmmej-05-06-02

Hossain, S., Siddique, M. T., Hosen, M. M., Jamee, S. S., Akter, S., Akter, P., ... & Khan, M. S. (2025). Comparative Analysis of Sentiment Analysis Models for Consumer Feedback: Evaluating the Impact of Machine Learning and Deep Learning Approaches on Business Strategies. Frontline Social Sciences and History Journal, 5(02), 18-29.

Sajal, A., Chy, M. S. K., Jamee, S. S., Uddin, M. N., Khan, M. S., Gharami, A. K., ... & Ahmed, M. (2025). Forecasting Bank Profitability Using Deep Learning and Macroeconomic Indicators: A Comparative Model Study. International Interdisciplinary Business Economics Advancement Journal, 6(06), 08-20.

Mohammad Iftekhar Ayub, Arun Kumar Gharami, Fariha Noor Nitu, Mohammad Nasir Uddin, Md Iftakhayrul Islam, Alifa Majumder Nijhum, Molay Kumar Roy, & Syed Yezdani. (2025). AI-Driven Demand Forecasting for Multi-Echelon Supply Chains: Enhancing Forecasting Accuracy and Operational Efficiency through Machine Learning and Deep Learning Techniques. The American Journal of Management and Economics Innovations, 7(07), 74–85. https://doi.org/10.37547/tajmei/Volume07Issue07-09

Sharmin Sultana Akhi, Sadia Akter, Md Refat Hossain, Arjina Akter, Nur Nobe, & Md Monir Hosen. (2025). Early-Stage Chronic Disease Prediction Using Deep Learning: A Comparative Study of LSTM and Traditional Machine Learning Models. Frontline Medical Sciences and Pharmaceutical Journal, 5(07), 8–17. https://doi.org/10.37547/medical-fmspj-05-07-02

Ayub, M. I., Bhattacharjee, B., Akter, P., Uddin, M. N., Gharami, A. K., Islam, M. I., ... & Chambugong, L. (2025). Deep Learning for Real-Time Fraud Detection: Enhancing Credit Card Security in Banking Systems. The American Journal of Engineering and Technology, 7(04), 141-150.

Jamee, S. S., Sajal, A., Obaid, M. O., Uddin, M. N., Haque, M. S. U., Gharami, A. K., ... & FARHAN, M. (2025). Integrating Consumer Sentiment and Deep Learning for GDP Forecasting: A Novel Approach in Financial Industry. International Interdisciplinary Business Economics Advancement Journal, 6(05), 90-101.

Siddique, M. T., Uddin, M. J., Chambugong, L., Nijhum, A. M., Uddin, M. N., Shahid, R., ... & Ahmed, M. (2025). AI-Powered Sentiment Analytics in Banking: A BERT and LSTM Perspective. International Interdisciplinary Business Economics Advancement Journal, 6(05), 135-147.

Sajal, A., Chy, M. S. K., Jamee, S. S., Uddin, M. N., Khan, M. S., Gharami, A. K., ... & Ahmed, M. (2025). Forecasting Bank Profitability Using Deep Learning and Macroeconomic Indicators: A Comparative Model Study. International Interdisciplinary Business Economics Advancement Journal, 6(06), 08-20.

Umam, S., & Razzak, R. B. (2024, October). Linguistic disparities in mental health services: Analyzing the impact of spanish language support availability in saint louis region, Missouri. In APHA 2024 Annual Meeting and Expo. APHA.

Adams, R., Grellner, S., Umam, S., & Shacham, E. (2023, November). Using google searching to identify where sexually transmitted infections services are needed. In APHA 2023 Annual Meeting and Expo. APHA.

Umam, S., & Razzak, R. B. (2025, November). A 20-Year Overview of Trends in Secondhand Smoke Exposure Among Cardiovascular Disease Patients in the US: 1999–2020. In APHA 2025 Annual Meeting and Expo. APHA.

Razzak, R. B., & Umam, S. (2025, November). Health Equity in Action: Utilizing PRECEDE-PROCEED Model to Address Gun Violence and associated PTSD in Shaw Community, Saint Louis, Missouri. In APHA 2025 Annual Meeting and Expo. APHA.

Razzak, R. B., & Umam, S. (2025, November). A Place-Based Spatial Analysis of Social Determinants and Opioid Overdose Disparities on Health Outcomes in Illinois, United States. In APHA 2025 Annual Meeting and Expo. APHA.

Umam, S., Razzak, R. B., Munni, M. Y., & Rahman, A. (2025). Exploring the non-linear association of daily cigarette consumption behavior and food security-An application of CMP GAM regression. PLoS One, 20(7), e0328109

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

Md Tarake Siddique, Mohammad Nasir Uddin, Arun Kumar Gharami, Md Sayem Khan, Molay Kumar Roy, Mohammad Kawsur Sharif, & Lisa Chambugong. (2025). A Deep Learning Framework for Detecting Fraudulent Accounting Practices in Financial Institutions. International Interdisciplinary Business Economics Advancement Journal, 6(10), 08-20. https://doi.org/10.55640/business/volume06issue10-02