Articles | Open Access | https://doi.org/10.55640/business/volume06issue07-02

Enhancing Credit Scoring with Multimodal Deep Learning: A Hybrid Neural Network Approach Using Structured and Unstructured Financial Data

Abstract

In the evolving landscape of financial technology, credit scoring systems must adapt to increasingly complex data environments to ensure accurate and fair lending decisions. Traditional credit models rely heavily on structured data such as income, credit history, and debt ratios, but often fall short in assessing borrowers with limited credit footprints or non-traditional financial behaviors. This study proposes a hybrid deep neural network (DNN) model that integrates structured financial indicators with unstructured textual data—including customer service interactions, financial news, and social media sentiment—to enhance credit risk prediction. We collected and preprocessed a multimodal dataset comprising over 100,000 loan profiles, developed a bi-directional LSTM architecture for text processing, and fused it with structured data via a deep learning framework. Our model was evaluated against benchmark algorithms including logistic regression, random forest, XGBoost, and single-input DNNs. Experimental results show that the hybrid DNN significantly outperforms traditional models, achieving an accuracy of 87% and an AUC-ROC of 0.91. These findings underscore the potential of multimodal deep learning in transforming credit scoring systems, improving model precision, and expanding financial inclusion. The proposed model offers a scalable and robust framework for future credit evaluation tools in data-rich financial ecosystems.

Keywords

Credit scoring, deep neural networks, unstructured data, financial risk assessment, LSTM, multimodal learning, machine learning.

References

Hand, D. J., & Henley, W. E. (1997). Statistical classification methods in consumer credit scoring: a review. Journal of the Royal Statistical Society: Series A (Statistics in Society), 160(3), 523–541. https://doi.org/10.1111/j.1467-985X.1997.00078.x

Brown, I., & Mues, C. (2012). An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert Systems with Applications, 39(3), 3446–3453. https://doi.org/10.1016/j.eswa.2011.09.033

Malekipirbazari, M., & Aksakalli, V. (2015). Risk assessment in social lending via random forests. Expert Systems with Applications, 42(10), 4621–4631. https://doi.org/10.1016/j.eswa.2015.01.002

Xiao, L., Hu, X., Yu, F. R., Xie, R., & Liu, Y. (2020). Deep learning for the prediction of loan default: A comparison with traditional machine learning approaches. Financial Innovation, 6(1), 1–22. https://doi.org/10.1186/s40854-020-00191-2

Cerchiello, P., Nicola, G., & Giudici, P. (2017). Big data analytics for bank customer profiling. Journal of Risk and Financial Management, 10(1), 6. https://doi.org/10.3390/jrfm10010006

Mai, F., Shan, Z., Bai, Q., Wang, X. S., & Chiang, R. H. L. (2018). How does social media impact bankruptcy prediction? Evidence from Twitter. MIS Quarterly, 42(2), 555–578. https://doi.org/10.25300/MISQ/2018/14418

Bazarbash, M. (2019). FinTech in Financial Inclusion: Machine Learning Applications in Assessing Credit Risk (IMF Working Paper No. 19/109). International Monetary Fund. https://www.imf.org/en/Publications/WP/Issues/2019/06/27/FinTech-in-Financial-Inclusion-Machine-Learning-Applications-in-Assessing-Credit-Risk-46988

Huang, B., & Paul, M. J. (2020). Extracting actionable information from financial documents using BERT. In Proceedings of the First Workshop on Financial Technology and Natural Language Processing (pp. 29–34). https://doi.org/10.18653/v1/2020.financialnlp-1.4

Hossain, M. N., Hossain, S., Nath, A., Nath, P. C., Ayub, M. I., Hassan, M. M., ... & Rasel, M. (2024). ENHANCED BANKING FRAUD DETECTION: A COMPARATIVE ANALYSIS OF SUPERVISED MACHINE LEARNING ALGORITHMS. American Research Index Library, 23-35.

Uddin, A., Pabel, M. A. H., Alam, M. I., KAMRUZZAMAN, F., Haque, M. S. U., Hosen, M. M., ... & Ghosh, S. K. (2025). Advancing Financial Risk Prediction and Portfolio Optimization Using Machine Learning Techniques. The American Journal of Management and Economics Innovations, 7(01), 5-20.

Nguyen, Q. G., Nguyen, L. H., Hosen, M. M., Rasel, M., Shorna, J. F., Mia, M. S., & Khan, S. I. (2025). Enhancing Credit Risk Management with Machine Learning: A Comparative Study of Predictive Models for Credit Default Prediction. The American Journal of Applied sciences, 7(01), 21-30.

Bhattacharjee, B., Mou, S. N., Hossain, M. S., Rahman, M. K., Hassan, M. M., Rahman, N., ... & Haque, M. S. U. (2024). MACHINE LEARNING FOR COST ESTIMATION AND FORECASTING IN BANKING: A COMPARATIVE ANALYSIS OF ALGORITHMS. Frontline Marketing,Management and Economics Journal, 4(12), 66-83.

Hossain, S., Siddique, M. T., Hosen, M. M., Jamee, S. S., Akter, S., Akter, P., ... & Khan, M. S. (2025). Comparative Analysis of Sentiment Analysis Models for Consumer Feedback: Evaluating the Impact of Machine Learning and Deep Learning Approaches on Business Strategies. Frontline Social Sciences and History Journal, 5(02), 18-29.

Nath, F., Chowdhury, M. O. S., & Rhaman, M. M. (2023). Navigating produced water sustainability in the oil and gas sector: A Critical review of reuse challenges, treatment technologies, and prospects ahead. Water, 15(23), 4088.

PHAN, H. T. N., & AKTER, A. (2024). HYBRID MACHINE LEARNING APPROACH FOR ORAL CANCER DIAGNOSIS AND CLASSIFICATION USING HISTOPATHOLOGICAL IMAGES. Universal Publication Index e-Library, 63-76.

Hossain, S., Siddique, M. T., Hosen, M. M., Jamee, S. S., Akter, S., Akter, P., ... & Khan, M. S. (2025). Comparative Analysis of Sentiment Analysis Models for Consumer Feedback: Evaluating the Impact of Machine Learning and Deep Learning Approaches on Business Strategies. Frontline Social Sciences and History Journal, 5(02), 18-29.

Nath, F., Asish, S., Debi, H. R., Chowdhury, M. O. S., Zamora, Z. J., & Muñoz, S. (2023, August). Predicting hydrocarbon production behavior in heterogeneous reservoir utilizing deep learning models. In Unconventional Resources Technology Conference, 13–15 June 2023 (pp. 506-521). Unconventional Resources Technology Conference (URTeC).

Ahmmed, M. J., Rahman, M. M., Das, A. C., Das, P., Pervin, T., Afrin, S., ... & Rahman, N. (2024). COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BANKING FRAUD DETECTION: A STUDY ON PERFORMANCE, PRECISION, AND REAL-TIME APPLICATION. American Research Index Library, 31-44.

Akhi, S. S., Shakil, F., Dey, S. K., Tusher, M. I., Kamruzzaman, F., Jamee, S. S., ... & Rahman, N. (2025). Enhancing Banking Cybersecurity: An Ensemble-Based Predictive Machine Learning Approach. The American Journal of Engineering and Technology, 7(03), 88-97.

Pabel, M. A. H., Bhattacharjee, B., Dey, S. K., Jamee, S. S., Obaid, M. O., Mia, M. S., ... & Sharif, M. K. (2025). BUSINESS ANALYTICS FOR CUSTOMER SEGMENTATION: A COMPARATIVE STUDY OF MACHINE LEARNING ALGORITHMS IN PERSONALIZED BANKING SERVICES. American Research Index Library, 1-13.

Siddique, M. T., Jamee, S. S., Sajal, A., Mou, S. N., Mahin, M. R. H., Obaid, M. O., ... & Hasan, M. (2025). Enhancing Automated Trading with Sentiment Analysis: Leveraging Large Language Models for Stock Market Predictions. The American Journal of Engineering and Technology, 7(03), 185-195.

Mohammad Iftekhar Ayub, Biswanath Bhattacharjee, Pinky Akter, Mohammad Nasir Uddin, Arun Kumar Gharami, Md Iftakhayrul Islam, Shaidul Islam Suhan, Md Sayem Khan, & Lisa Chambugong. (2025). Deep Learning for Real-Time Fraud Detection: Enhancing Credit Card Security in Banking Systems. The American Journal of Engineering and Technology, 7(04), 141–150. https://doi.org/10.37547/tajet/Volume07Issue04-19

Nguyen, A. T. P., Jewel, R. M., & Akter, A. (2025). Comparative Analysis of Machine Learning Models for Automated Skin Cancer Detection: Advancements in Diagnostic Accuracy and AI Integration. The American Journal of Medical Sciences and Pharmaceutical Research, 7(01), 15-26.

Nguyen, A. T. P., Shak, M. S., & Al-Imran, M. (2024). ADVANCING EARLY SKIN CANCER DETECTION: A COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR MELANOMA DIAGNOSIS USING DERMOSCOPIC IMAGES. International Journal of Medical Science and Public Health Research, 5(12), 119-133.

Phan, H. T. N., & Akter, A. (2025). Predicting the Effectiveness of Laser Therapy in Periodontal Diseases Using Machine Learning Models. The American Journal of Medical Sciences and Pharmaceutical Research, 7(01), 27-37.

Phan, H. T. N. (2024). EARLY DETECTION OF ORAL DISEASES USING MACHINE LEARNING: A COMPARATIVE STUDY OF PREDICTIVE MODELS AND DIAGNOSTIC ACCURACY. International Journal of Medical Science and Public Health Research, 5(12), 107-118.

Al Mamun, A., Nath, A., Dey, S. K., Nath, P. C., Rahman, M. M., Shorna, J. F., & Anjum, N. (2025). Real-Time Malware Detection in Cloud Infrastructures Using Convolutional Neural Networks: A Deep Learning Framework for Enhanced Cybersecurity. The American Journal of Engineering and Technology, 7(03), 252-261.

Akhi, S. S., Shakil, F., Dey, S. K., Tusher, M. I., Kamruzzaman, F., Jamee, S. S., ... & Rahman, N. (2025). Enhancing Banking Cybersecurity: An Ensemble-Based Predictive Machine Learning Approach. The American Journal of Engineering and Technology, 7(03), 88-97.

Mazharul Islam Tusher, “Deep Learning Meets Early Diagnosis: A Hybrid CNN-DNN Framework for Lung Cancer Prediction and Clinical Translation”, ijmsphr, vol. 6, no. 05, pp. 63–72, May 2025.

Integrating Consumer Sentiment and Deep Learning for GDP Forecasting: A Novel Approach in Financial Industry”., Int Bus & Eco Adv Jou, vol. 6, no. 05, pp. 90–101, May 2025, doi: 10.55640/business/volume06issue05-05.

Tamanna Pervin, Sharmin Akter, Sadia Afrin, Md Refat Hossain, MD Sajedul Karim Chy, Sadia Akter, Md Minzamul Hasan, Md Mafuzur Rahman, & Chowdhury Amin Abdullah. (2025). A Hybrid CNN-LSTM Approach for Detecting Anomalous Bank Transactions: Enhancing Financial Fraud Detection Accuracy. The American Journal of Management and Economics Innovations, 7(04), 116–123. https://doi.org/10.37547/tajmei/Volume07Issue04-15

Mohammad Iftekhar Ayub, Biswanath Bhattacharjee, Pinky Akter, Mohammad Nasir Uddin, Arun Kumar Gharami, Md Iftakhayrul Islam, Shaidul Islam Suhan, Md Sayem Khan, & Lisa Chambugong. (2025). Deep Learning for Real-Time Fraud Detection: Enhancing Credit Card Security in Banking Systems. The American Journal of Engineering and Technology, 7(04), 141–150. https://doi.org/10.37547/tajet/Volume07Issue04-19

Mazharul Islam Tusher, Han Thi Ngoc Phan, Arjina Akter, Md Rayhan Hassan Mahin, & Estak Ahmed. (2025). A Machine Learning Ensemble Approach for Early Detection of Oral Cancer: Integrating Clinical Data and Imaging Analysis in the Public Health. International Journal of Medical Science and Public Health Research, 6(04), 07–15. https://doi.org/10.37547/ijmsphr/Volume06Issue04-02

Safayet Hossain, Ashadujjaman Sajal, Sakib Salam Jamee, Sanjida Akter Tisha, Md Tarake Siddique, Md Omar Obaid, MD Sajedul Karim Chy, & Md Sayem Ul Haque. (2025). Comparative Analysis of Machine Learning Models for Credit Risk Prediction in Banking Systems. The American Journal of Engineering and Technology, 7(04), 22–33. https://doi.org/10.37547/tajet/Volume07Issue04-04

Ayub, M. I., Bhattacharjee, B., Akter, P., Uddin, M. N., Gharami, A. K., Islam, M. I., ... & Chambugong, L. (2025). Deep Learning for Real-Time Fraud Detection: Enhancing Credit Card Security in Banking Systems. The American Journal of Engineering and Technology, 7(04), 141-150.

Siddique, M. T., Uddin, M. J., Chambugong, L., Nijhum, A. M., Uddin, M. N., Shahid, R., ... & Ahmed, M. (2025). AI-Powered Sentiment Analytics in Banking: A BERT and LSTM Perspective. International Interdisciplinary Business Economics Advancement Journal, 6(05), 135-147.

Thakur, K., Sayed, M. A., Tisha, S. A., Alam, M. K., Hasan, M. T., Shorna, J. F., ... & Ayon, E. H. (2025). Multimodal Deepfake Detection Using Transformer-Based Large Language Models: A Path Toward Secure Media and Clinical Integrity. The American Journal of Engineering and Technology, 7(05), 169-177.

Al Mamun, A., Nath, A., Dey, S. K., Nath, P. C., Rahman, M. M., Shorna, J. F., & Anjum, N. (2025). Real-Time Malware Detection in Cloud Infrastructures Using Convolutional Neural Networks: A Deep Learning Framework for Enhanced Cybersecurity. The American Journal of Engineering and Technology, 7(03), 252-261.

Tusher, M. I., Hasan, M. M., Akter, S., Haider, M., Chy, M. S. K., Akhi, S. S., ... & Shaima, M. (2025). Deep Learning Meets Early Diagnosis: A Hybrid CNN-DNN Framework for Lung Cancer Prediction and Clinical Translation. International Journal of Medical Science and Public Health Research, 6(05), 63-72.

Sajal, A., Chy, M. S. K., Jamee, S. S., Uddin, M. N., Khan, M. S., Gharami, A. K., ... & Ahmed, M. (2025). Forecasting Bank Profitability Using Deep Learning and Macroeconomic Indicators: A Comparative Model Study. International Interdisciplinary Business Economics Advancement Journal, 6(06), 08-20.

Paresh Chandra Nath, Md Sajedul Karim Chy, Md Refat Hossain, Md Rashel Miah, Sakib Salam Jamee, Mohammad Kawsur Sharif, Md Shakhaowat Hossain, & Mousumi Ahmed. (2025). Comparative Performance of Large Language Models for Sentiment Analysis of Consumer Feedback in the Banking Sector: Accuracy, Efficiency, and Practical Deployment. Frontline Marketing, Management and Economics Journal, 5(06), 07–19. https://doi.org/10.37547/marketing-fmmej-05-06-02

Hossain, S., Siddique, M. T., Hosen, M. M., Jamee, S. S., Akter, S., Akter, P., ... & Khan, M. S. (2025). Comparative Analysis of Sentiment Analysis Models for Consumer Feedback: Evaluating the Impact of Machine Learning and Deep Learning Approaches on Business Strategies. Frontline Social Sciences and History Journal, 5(02), 18-29.

Jamee, S. S., Sajal, A., Obaid, M. O., Uddin, M. N., Haque, M. S. U., Gharami, A. K., ... & FARHAN, M. (2025). Integrating Consumer Sentiment and Deep Learning for GDP Forecasting: A Novel Approach in Financial Industry. International Interdisciplinary Business Economics Advancement Journal, 6(05), 90-101.

Hossain, S., Sajal, A., Jamee, S. S., Tisha, S. A., Siddique, M. T., Obaid, M. O., ... & Haque, M. S. U. (2025). Comparative Analysis of Machine Learning Models for Credit Risk Prediction in Banking Systems. The American Journal of Engineering and Technology, 7(04), 22-33.

Pabel, M. A. H., Bhattacharjee, B., Dey, S. K., Jamee, S. S., Obaid, M. O., Mia, M. S., ... & Sharif, M. K. BUSINESS ANALYTICS FOR CUSTOMER SEGMENTATION: A COMPARATIVE STUDY OF MACHINE LEARNING ALGORITHMS IN PERSONALIZED BANKING SERVICES.

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

Enhancing Credit Scoring with Multimodal Deep Learning: A Hybrid Neural Network Approach Using Structured and Unstructured Financial Data. (2025). International Interdisciplinary Business Economics Advancement Journal, 6(07), 09-22. https://doi.org/10.55640/business/volume06issue07-02